Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Eur J Epidemiol ; 2023 Apr 24.
Article in English | MEDLINE | ID: covidwho-2297178

ABSTRACT

While some studies have previously estimated lives saved by COVID-19 vaccination, we estimate how many deaths could have been averted by vaccination in the US but were not because of a failure to vaccinate. We used a simple method based on a nationally representative dataset to estimate the preventable deaths among unvaccinated individuals in the US from May 30, 2021 to September 3, 2022 adjusted for the effects of age and time. We estimated that at least 232,000 deaths could have been prevented among unvaccinated adults during the 15 months had they been vaccinated with at least a primary series. While uncertainties exist regarding the exact number of preventable deaths and more granular data are needed on other factors causing differences in death rates between the vaccinated and unvaccinated groups to inform these estimates, this method is a rapid assessment on vaccine-preventable deaths due to SARS-CoV-2 that has crucial public health implications. The same rapid method can be used for future public health emergencies.

2.
MMWR Morb Mortal Wkly Rep ; 72(6): 145-152, 2023 02 10.
Article in English | MEDLINE | ID: covidwho-2231498

ABSTRACT

On September 1, 2022, CDC recommended an updated (bivalent) COVID-19 vaccine booster to help restore waning protection conferred by previous vaccination and broaden protection against emerging variants for persons aged ≥12 years (subsequently extended to persons aged ≥6 months).* To assess the impact of original (monovalent) COVID-19 vaccines and bivalent boosters, case and mortality rate ratios (RRs) were estimated comparing unvaccinated and vaccinated persons aged ≥12 years by overall receipt of and by time since booster vaccination (monovalent or bivalent) during Delta variant and Omicron sublineage (BA.1, BA.2, early BA.4/BA.5, and late BA.4/BA.5) predominance.† During the late BA.4/BA.5 period, unvaccinated persons had higher COVID-19 mortality and infection rates than persons receiving bivalent doses (mortality RR = 14.1 and infection RR = 2.8) and to a lesser extent persons vaccinated with only monovalent doses (mortality RR = 5.4 and infection RR = 2.5). Among older adults, mortality rates among unvaccinated persons were significantly higher than among those who had received a bivalent booster (65-79 years; RR = 23.7 and ≥80 years; 10.3) or a monovalent booster (65-79 years; 8.3 and ≥80 years; 4.2). In a second analysis stratified by time since booster vaccination, there was a progressive decline from the Delta period (RR = 50.7) to the early BA.4/BA.5 period (7.4) in relative COVID-19 mortality rates among unvaccinated persons compared with persons receiving who had received a monovalent booster within 2 weeks-2 months. During the early BA.4/BA.5 period, declines in relative mortality rates were observed at 6-8 (RR = 4.6), 9-11 (4.5), and ≥12 (2.5) months after receiving a monovalent booster. In contrast, bivalent boosters received during the preceding 2 weeks-2 months improved protection against death (RR = 15.2) during the late BA.4/BA.5 period. In both analyses, when compared with unvaccinated persons, persons who had received bivalent boosters were provided additional protection against death over monovalent doses or monovalent boosters. Restored protection was highest in older adults. All persons should stay up to date with COVID-19 vaccination, including receipt of a bivalent booster by eligible persons, to reduce the risk for severe COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Incidence , SARS-CoV-2 , Vaccination
3.
MMWR Morb Mortal Wkly Rep ; 72(5): 125-127, 2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2226325

ABSTRACT

Monitoring emerging SARS-CoV-2 lineages and their epidemiologic characteristics helps to inform public health decisions regarding vaccine policy, the use of therapeutics, and health care capacity. When the SARS-CoV-2 Alpha variant emerged in late 2020, a spike gene (S-gene) deletion (Δ69-70) in the N-terminal region, which might compensate for immune escape mutations that impair infectivity (1), resulted in reduced or failed S-gene target amplification in certain multitarget reverse transcription-polymerase chain reaction (RT-PCR) assays, a pattern referred to as S-gene target failure (SGTF) (2). The predominant U.S. SARS-CoV-2 lineages have generally alternated between SGTF and S-gene target presence (SGTP), which alongside genomic sequencing, has facilitated early monitoring of emerging variants. During a period when Omicron BA.5-related sublineages (which exhibit SGTF) predominated, an XBB.1.5 sublineage with SGTP has rapidly expanded in the northeastern United States and other regions.


Subject(s)
COVID-19 , Public Health , United States/epidemiology , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Mutation , COVID-19 Testing
4.
MMWR Morb Mortal Wkly Rep ; 72(5): 119-124, 2023 02 03.
Article in English | MEDLINE | ID: covidwho-2226324

ABSTRACT

The SARS-CoV-2 Omicron sublineage XBB was first detected in the United States in August 2022.* XBB together with a sublineage, XBB.1.5, accounted for >50% of sequenced lineages in the Northeast by December 31, 2022, and 52% of sequenced lineages nationwide as of January 21, 2023. COVID-19 vaccine effectiveness (VE) can vary by SARS-CoV-2 variant; reduced VE has been observed against some variants, although this is dependent on the health outcome of interest. The goal of the U.S. COVID-19 vaccination program is to prevent severe disease, including hospitalization and death (1); however, VE against symptomatic infection can provide useful insight into vaccine protection against emerging variants in advance of VE estimates against more severe disease. Data from the Increasing Community Access to Testing (ICATT) national pharmacy program for SARS-CoV-2 testing were analyzed to estimate VE of updated (bivalent) mRNA COVID-19 vaccines against symptomatic infection caused by BA.5-related and XBB/XBB.1.5-related sublineages among immunocompetent adults during December 1, 2022­January 13, 2023. Reduction or failure of spike gene (S-gene) amplification (SGTF) in real-time reverse transcription­polymerase chain reaction (RT-PCR) was used as a proxy indicator of infection with likely BA.5-related sublineages and S-gene target presence (SGTP) of infection with likely XBB/XBB.1.5-related sublineages (2). Among 29,175 nucleic acid amplification tests (NAATs) with SGTF or SGTP results available from adults who had previously received 2­4 monovalent COVID-19 vaccine doses, the relative VE of a bivalent booster dose given 2­3 months earlier compared with no bivalent booster in persons aged 18­49 years was 52% against symptomatic BA.5 infection and 48% against symptomatic XBB/XBB.1.5 infection. As new SARS-CoV-2 variants emerge, continued vaccine effectiveness monitoring is important. Bivalent vaccines appear to provide additional protection against symptomatic BA.5-related sublineage and XBB/XBB.1.5-related sublineage infections in persons who had previously received 2, 3, or 4 monovalent vaccine doses. All persons should stay up to date with recommended COVID-19 vaccines, including receiving a bivalent booster dose when they are eligible.


Subject(s)
COVID-19 , Adult , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2/genetics , Vaccines, Combined , COVID-19 Testing , Vaccine Efficacy , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL